Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Rev Immunol ; 22(2): 85-96, 2022 02.
Article in English | MEDLINE | ID: covidwho-2133458

ABSTRACT

A paradigm shift has recently occurred in the field of cancer therapeutics. Traditional anticancer agents, such as chemotherapy, radiotherapy and small-molecule drugs targeting specific signalling pathways, have been joined by cellular immunotherapies based on T cell engineering. The rapid adoption of novel, patient-specific cellular therapies builds on scientific developments in tumour immunology, genetic engineering and cell manufacturing, best illustrated by the curative potential of chimeric antigen receptor (CAR) T cell therapy targeting CD19-expressing malignancies. However, the clinical benefit observed in many patients may come at a cost. In up to one-third of patients, significant toxicities occur that are directly associated with the induction of powerful immune effector responses. The most frequently observed immune-mediated toxicities are cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. This Review discusses our current understanding of their pathophysiology and clinical features, as well as the development of novel therapeutics for their prevention and/or management.


Subject(s)
Neoplasms , Neurotoxicity Syndromes , Antigens, CD19 , Cytokine Release Syndrome/etiology , Humans , Immunotherapy/adverse effects , Immunotherapy, Adoptive/adverse effects , Neoplasms/drug therapy , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Receptors, Antigen, T-Cell/genetics
2.
Brain Behav Immun ; 87: 18-22, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719333

ABSTRACT

Viral infections have detrimental impacts on neurological functions, and even to cause severe neurological damage. Very recently, coronaviruses (CoV), especially severe acute respiratory syndrome CoV 2 (SARS-CoV-2), exhibit neurotropic properties and may also cause neurological diseases. It is reported that CoV can be found in the brain or cerebrospinal fluid. The pathobiology of these neuroinvasive viruses is still incompletely known, and it is therefore important to explore the impact of CoV infections on the nervous system. Here, we review the research into neurological complications in CoV infections and the possible mechanisms of damage to the nervous system.


Subject(s)
Coronavirus Infections/physiopathology , Nervous System Diseases/physiopathology , Pneumonia, Viral/physiopathology , Betacoronavirus , COVID-19 , Consciousness Disorders/etiology , Consciousness Disorders/physiopathology , Coronavirus 229E, Human , Coronavirus Infections/complications , Coronavirus NL63, Human , Coronavirus OC43, Human , Dysgeusia/etiology , Dysgeusia/physiopathology , Encephalitis/etiology , Encephalitis/physiopathology , Encephalitis, Viral/etiology , Encephalitis, Viral/physiopathology , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/physiopathology , Humans , Middle East Respiratory Syndrome Coronavirus , Nervous System Diseases/etiology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/physiopathology , Neurotoxicity Syndromes/virology , Olfaction Disorders/etiology , Olfaction Disorders/physiopathology , Pandemics , Pneumonia, Viral/complications , Polyneuropathies/etiology , Polyneuropathies/physiopathology , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Seizures/etiology , Seizures/physiopathology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/physiopathology , Stroke/etiology , Stroke/physiopathology
3.
JCO Clin Cancer Inform ; 5: 668-678, 2021 06.
Article in English | MEDLINE | ID: covidwho-1264197

ABSTRACT

Chimeric antigen receptor T-cell (CAR-T) therapy is a paradigm-shifting immunotherapy modality in oncology; however, unique toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome limit its ability to be implemented more widely in the outpatient setting or at smaller-volume centers. Three operational challenges with CAR-T therapy include the following: (1) the logistics of toxicity monitoring, ie, with frequent vital sign checks and neurologic assessments; (2) the specialized knowledge required for toxicity management, particularly with regard to CRS and immune effector cell-associated neurotoxicity syndrome; and (3) the need for high-quality symptomatic and supportive care during this intensive period. In this review, we explore potential niches for digital innovations that can improve the implementation of CAR-T therapy in each of these domains. These tools include patient-facing technologies and provider-facing platforms: for example, wearable devices and mobile health apps to screen for fevers and encephalopathy, electronic patient-reported outcome assessments-based workflows to assist with symptom management, machine learning algorithms to predict emerging CRS in real time, clinical decision support systems to assist with toxicity management, and digital coaching to help maintain wellness. Televisits, which have grown in prominence since the novel coronavirus pandemic, will continue to play a key role in the monitoring and management of CAR-T-related toxicities as well. Limitations of these strategies include the need to ensure care equity and stakeholder buy-in, both operationally and financially. Nevertheless, once developed and validated, the next-generation implementation of CAR-T therapy using these digital tools may improve both its safety and accessibility.


Subject(s)
Cytokine Release Syndrome/etiology , Immunotherapy, Adoptive/adverse effects , Telemedicine/methods , COVID-19 , Cell- and Tissue-Based Therapy/adverse effects , Humans , Immunotherapy, Adoptive/methods , Machine Learning , Neurotoxicity Syndromes/etiology , Precision Medicine , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen
6.
Biosci Trends ; 14(2): 139-143, 2020 May 21.
Article in English | MEDLINE | ID: covidwho-100189

ABSTRACT

In late March and early April 2020, the antimalarial drug, chloroquine, has been approved as an emergency treatment for the coronavirus disease 2019 (COVID-19) in the United States and in Europe. Although infrequent, neuropsychiatric symptoms have been reported in patients who received chloroquine for the treatment of malaria or autoimmune diseases. In this study, aiming to investigate these adverse events (AEs) using a large self-reporting database, we conducted a disproportionality analysis for the detection of neuropsychiatric AE signals associated with the use of chloroquine (or hydroxychloroquine), reported to FDA Adverse Event Reporting System (FAERS) database between the fourth quarter of 2012 and the fourth quarter of 2019. We included 2,389,474 AE cases, among which 520 cases developed neuropsychiatric AE following the use of chloroquine. Adjusted reporting odds ratio (ROR) for the development of each of the neuropsychiatric AEs following the use of chloroquine was calculated using a multilevel model: exposure to chloroquine was associated with a statistically significant high reporting of amnesia, delirium, hallucinations, depression, and loss of consciousness, (lower 95% confidence interval of the adjusted ROR > 1), although the degree of increase in their ROR was limited. There was no statistically significant high reporting of any other neuropsychiatric AE, including suicide, psychosis, confusion, and agitation. Current pharmacovigilance study results did not suggest any potential link between the use of chloroquine and an increased risk of suicide, psychosis, confusion, and agitation, which would be informative during the emergency use of chloroquine for the treatment of COVID-19.


Subject(s)
Chloroquine/adverse effects , Mental Disorders/chemically induced , Neurotoxicity Syndromes/etiology , Adverse Drug Reaction Reporting Systems , Aged , Betacoronavirus/isolation & purification , Chloroquine/administration & dosage , Databases, Factual , Female , Humans , Male , Middle Aged , Pharmacovigilance , Retrospective Studies , SARS-CoV-2 , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL